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Wilcoxon p−value:  1.92e−29
Cliff's Delta:  0.892 
CI: [ 0.806 ,  0.941 ]
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UTI diagnosis in young children is challenging due to 
limitations of traditional tests. This study applied 
metatranscriptomic RNA-sequencing (RNA-seq) to 
214 pediatric urine samples, using unsupervised 
learning to identify globally distinct immune response 
patterns and accurately detect uropathogens. RNA-
seq also revealed immune-suppressing and novel 
uropathogens missed by standard methods. By 
integrating host and pathogen data, RNA-seq 
provides a more objective and comprehensive 
diagnostic approach, improving UTI detection and 
reducing unnecessary antibiotic use in children.
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• Urinary tract infections (UTIs) are among the most 
common bacterial infections in early childhood1 but 
remain challenging to diagnose.

• Current diagnostic methods have limitations in 
detecting both pathogens (e.g., culture-based tests) 
and host responses (e.g., leukocyte esterase [LE] 
assays)2.

• Metatranscriptomic RNA-seq (MT) offers a promising 
alternative by simultaneously detecting pathogens 
and host immune responses within environmental 
samples3.

• Unlike metagenomics, MT captures real-time gene 
expression in both host and pathogens3. 

• This study applied MT to urine samples from 214 
pediatric patients to evaluate its diagnostic potential.

Figure 1. Urine samples from 214 children (1–36 
months old) with UTI-like symptoms underwent RNA-
sequencing and clinical testing, generating four 
independent diagnostic classifications based on host 
response and uropathogen profiles. Patients were 
assigned to positive or negative groups, and 
classifications were evaluated for overall agreement.

Figure 5. Venn diagram highlighting ~89% 
agreement (190/214 patients) and ~11% 
disagreement (24/214 patients) between clinical and 
RNA-seq derived groups.

Figure 2. (A) PCA plot of global patient gene 
expression, reducing 62,198 human gene 
dimensions to two principal components. Points are 
colored by k-means cluster (k = 2), with ellipses 
indicating the 95% confidence intervals for each 
cluster. (B) Top 8 enriched Gene Ontology (GO) 
biological processes in cluster 1 relative to cluster 2, 
ranked by p-adjusted value. The strong immune-
related process enrichment suggests that patients in 
cluster 1 are actively responding to an infection.

Figure 4. (A) Heatmap of differentially 
expressed genes (y-axis) between 
two k-means-determined host gene 
clusters (x-axis), with thresholds padj 
<  1x10–25, log2 fold-change > 2. An 
unlogged pathogen abundance score 
is overlaid as a bar plot above the 
heatmap to illustrate its strong 
relationship with gene expression 
patterns (B) Violin plots of pathogen 
abundance across two human gene 
expression clusters, with a highly 
significant difference (Wilcoxon test, p 
= 1.92×10⁻²⁹). (C) Receiver operator 
curve showing that pathogen 
abundance scores (Fig 3B, x-axis) 
predict host response classes (Fig 
2A) with AUC = 0.95 via logistic 
regression. It also accurately predicts 
LE activity (AUC = 0.96) and clinical 
culture-based tests (AUC = 0.99).

Figure 3. (A) Bubble plot showing the relative abundance of 
seven common UTI-associated pathogens7 (measured in 
reads-per-million, RPM) across 214 children, sorted in 
decreasing order by E. coli abundance. Human reads were 
removed before computing these RPM values. (B) One-
dimensional clustering of each patient’s logged pathogen 
abundance score (summation of RPM values from seven 
UTI-associated pathogens, Fig 3A). A random y-axis 
improves interpretability. Jenks Natural Breaks classification 
algorithm (k = 2) determined the optimal binary threshold 
(~4 log10RPM or ~10,000 RPM, black dotted line).
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• RNA-seq independently identified potential UTIs and 
revealed distinct immune activation patterns, 
uncovering novel diagnostic biomarkers.

• Kraken and Bracken taxonomic classification linked 
uropathogen abundance to host immune response 
intensity, highlighting a strong association. 

• Combining host and pathogen RNA-seq overcomes 
traditional diagnostic limitations, detecting clinically 
untested uropathogens and reducing human biases.

• RNA-seq enables cost-effective, less invasive 
diagnostics, with strong (~89%) agreement with 
clinical testing, potentially reducing unnecessary 
antibiotic use in children.

• Focus on human and pathogen genetic biomarkers to 
develop rapid, PCR-based diagnostic tests.

• Evaluate RNA-seq as a potential replacement for 
traditional tests, capturing host response and 
pathogen abundance in a single assay.

• Develop supervised models for early, non-invasive 
pyelonephritis detection, which is a severe kidney 
infection that represents a subset of UTIs.
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